Towards component reuse in MAC protocols

Tom Parker, Maarten Bezemer, Koen Langendoen

Current MAC Protocols New MAC Stack
l_ Listen Timing [Application
A
Continual Scheduled AllocateTime | MessageNow
- S M—— .
B-MAC — I [Transmission I
Send Timing | T |
|
R - |
Carrier sense Scheduled I Multiplexer ||
|
|
| LIV!AC - >y A
T-MAC 1
, | , AMAC |
I - - - = —_———a
Most current WSN MAC protocol implementations have multiple tasks to v
perform - deciding on correct timing, sending of packets, sending of I I T-
ime | r
acknowledgements, etc. However, as much of this is common to all MAC Globa e laye Traditional
protocols, there is duplication of functionality, which leads to larger MAC <> MAC prOtOCOI

protocol code size and therefore increasing numbers of bugs. We therefore

Packet layer

wished to redesign the process for creating a MAC protocol such that the

common functionality that does not necessarily need to be in a MAC

protocol itself can be separated out. We redefined the required modules and connections as shown above.
Implementation Cloud Experiment

We implemented T-MAC, LMAC and Crankshaft, as well as a "trivial" We performed a series of benchmark tests on the new MAC layers.
test MAC in TinyOS. These new implementations have been tested One of them used a cloud of broadcast nodes surrounding a unicast

both in TOSSIM and with our 26 node hardware testbed, as well as link.
against existing implementations of the protocols (simulations for .\~>
LMAC and Crankshaft; an earlier TinyOS version for T-MAC). Results

from these tests were promising - the AMAC implementations O O

behaved in the same way as the existing implementations,
reproducing faithfully the expected patterns of the protocols.

The level of effort required for ./'/
implementation was also much less;

AT-MAC was only 32% of the size of
the original T-MAC implementation,

The current performance of the unicast link for different MACs with
the new framework and existing work is shown in the graph below.

and Crankshaft was implemented 1 ' ' ' ' ' '
from scratch in only a month. I 1
0.8 f 1
Program sizes .g
©
j ol
Component Lines of Code | % of MAC Stack > 0.6 |]
o
MAC Framework | 3961 n/a =
o 0.4t .
AT-MAC 1426 26% < _ _
LMAC (simulation) ——
ALMAC 814 17% 0.2 1 LMAC (lambda) —— 1
T-MAC (monollthlcg —e—
Crankshaft 578 12% 0 T-MAC (lambda) —— .
Trivial MAC 339 7.8% 0 0.2 04 0.6 0.8 1 1.2 1.4

Message rate [msg/node/sec]

5
TU Delft

