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Most current WSN MAC protocol implementations have multiple tasks to v
perform - deciding on correct timing, sending of packets, sending of I I T-
ime | r
acknowledgements, etc. However, as much of this is common to all MAC Globa e laye Traditional
protocols, there is duplication of functionality, which leads to larger MAC <> MAC prOtOCOI

protocol code size and therefore increasing numbers of bugs. We therefore

Packet layer

wished to redesign the process for creating a MAC protocol such that the

common functionality that does not necessarily need to be in a MAC

protocol itself can be separated out. We redefined the required modules and connections as shown above.
Implementation Cloud Experiment

We implemented T-MAC, LMAC and Crankshaft, as well as a "trivial" We performed a series of benchmark tests on the new MAC layers.
test MAC in TinyOS. These new implementations have been tested One of them used a cloud of broadcast nodes surrounding a unicast

both in TOSSIM and with our 26 node hardware testbed, as well as link.
against existing implementations of the protocols (simulations for .\~>
LMAC and Crankshaft; an earlier TinyOS version for T-MAC). Results

from these tests were promising - the AMAC implementations O O

behaved in the same way as the existing implementations,
reproducing faithfully the expected patterns of the protocols.

The level of effort required for ./'/
implementation was also much less;

AT-MAC was only 32% of the size of
the original T-MAC implementation,

The current performance of the unicast link for different MACs with
the new framework and existing work is shown in the graph below.
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